99 research outputs found

    Study on Safety Control of Composite Roof in Deep Roadway based on Energy Balance Theory

    Get PDF
    Improving the safety and stability of composite roof in deep roadway is the strong guarantee for safe mining and sustainable development of coal mines. With three roadways of different composite roofs in Hulusu Coal Mine and Menkeqing Coal Mine as the research background, this paper explores the mechanical properties and energy dissipation law of coal-rock structures with different height ratios from the perspective of energy release and dissipation through lab experiments. The results indicate that the key to the stability of coal-rock structures lies in maintaining relatively low dissipation energy. Based on experimental results and the energy balance theory, two support principles were put forward and applied to experimental roadways. The field monitoring results show that the anchoring force on different composite roof displays different characteristics, proving that the work done by the support can adjust timely to the energy release and conversion so as to improve the safety and stability of roadways with different composite roofs. This study provides a reference for the deformation control in deep roadways with composite roofs under similar conditions

    RGBT Salient Object Detection: A Large-scale Dataset and Benchmark

    Full text link
    Salient object detection in complex scenes and environments is a challenging research topic. Most works focus on RGB-based salient object detection, which limits its performance of real-life applications when confronted with adverse conditions such as dark environments and complex backgrounds. Taking advantage of RGB and thermal infrared images becomes a new research direction for detecting salient object in complex scenes recently, as thermal infrared spectrum imaging provides the complementary information and has been applied to many computer vision tasks. However, current research for RGBT salient object detection is limited by the lack of a large-scale dataset and comprehensive benchmark. This work contributes such a RGBT image dataset named VT5000, including 5000 spatially aligned RGBT image pairs with ground truth annotations. VT5000 has 11 challenges collected in different scenes and environments for exploring the robustness of algorithms. With this dataset, we propose a powerful baseline approach, which extracts multi-level features within each modality and aggregates these features of all modalities with the attention mechanism, for accurate RGBT salient object detection. Extensive experiments show that the proposed baseline approach outperforms the state-of-the-art methods on VT5000 dataset and other two public datasets. In addition, we carry out a comprehensive analysis of different algorithms of RGBT salient object detection on VT5000 dataset, and then make several valuable conclusions and provide some potential research directions for RGBT salient object detection.Comment: 12 pages, 10 figures https://github.com/lz118/RGBT-Salient-Object-Detectio

    Non-invasive assessment of intracranial wall shear stress using high-resolution magnetic resonance imaging in combination with computational fluid dynamics technique

    Get PDF
    In vivo studies on association between wall shear stress (WSS) and intracranial plaque are deficient. Based on the three-dimensional T1-weighted high-resolution magnetic resonance imaging (3DT1 HR-MRI) data of patients with low-grade stenotic (<50%) atherosclerotic middle cerebral artery (MCA) and subjects with normal MCA, we built a three-dimensional reconstructed WSS model by computational fluid dynamics (CFD) technique. Three-dimensional registration of the CFD model to the HR-MRI was performed with projections based on the resolution and thickness of the images. The relationships between the WSS at each side of the vessel wall and plaque location were analyzed. A total of 94 MCA plaques from 43 patients and 50 normal MCAs were analyzed. In the normal MCAs, WSS was lower at the ventral-inferior wall than at the dorsal-superior wall (proximal segment, p < 0.001; middle segment, p < 0.001) and lower at the inner wall than at the outer wall of the MCA curve (p < 0.001). In atherosclerotic MCAs, similar low WSS regions were observed where plaques developed. The WSS ratio of the ventral-inferior wall to the dorsal-superior wall in atherosclerotic MCAs was lower than that in normal MCAs (p = 0.002). The WSSinner-outer ratio in atherosclerotic MCAs was lower than that in normal MCAs (p = 0.002). Low WSS was associated with MCA atherosclerosis formation and occurred mainly at the ventral-inferior wall, which was anatomically opposite the orifices of penetrating arteries, and at the inner wall of the MCA curve. Overall, the results were well consistent with the low WSS theory in atherosclerosis formation. The reconstructed WSS model is a promising novel method for assessing an individualized vascular profile once validated by further studies

    Adolescent frugality and perseverance as functional extensions of personality

    No full text
    The current study examined how adolescent personality contributes to the development of frugality and perseverance. In addition, the study examined how frugality and perseverance promote parental involvement and school engagement in adolescence. Participants were taken from waves 3, 4, and 5 of the Flourishing Families Project and included 341 two-parent families with at least one adolescent between the ages of 12-15 at Wave 3 (mean age = 13.28, SD = 1.01, 48.4% female), 92.6% of whom had complete data for Wave 4 (1 year later). The first major finding revealed that adolescent conscientiousness, agreeableness, and emotional stability predicted frugality and perseverance via structural equation modeling. The second major finding was that parental involvement promoted adolescent school engagement. The current study helps to better understand the interplay between adolescent personality, frugality, perseverance, parental involvement, and school engagement.</p

    Educational Technology Creative Component

    No full text
    This creative component project was completed to meet the requirement for the Masters of Education (emphasis in Educational Technology) in the School of Education at Iowa State University. The creative component project, a research and practice poster, was aligned to the following program standards: 1) Visionary Learner, Planner and Designer, 2) Equity and Citizenship Advocate, 3) Researcher and Analyst, and 4) Empowering Leader.</p

    Calreticulin Binds to Fas Ligand and Inhibits Neuronal Cell Apoptosis Induced by Ischemia-Reperfusion Injury

    No full text
    Background. Calreticulin (CRT) can bind to Fas ligand (FasL) and inhibit Fas/FasL-mediated apoptosis of Jurkat T cells. However, its effect on neuronal cell apoptosis has not been investigated. Purpose. We aimed to evaluate the neuroprotective effect of CRT following ischemia-reperfusion injury (IRI). Methods. Mice underwent middle cerebral artery occlusion (MCAO) and SH-SY5Y cells subjected to oxygen glucose deprivation (OGD) were used as models for IRI. The CRT protein level was detected by Western blotting, and mRNA expression of CRT, caspase-3, and caspase-8 was measured by real-time PCR. Immunofluorescence was used to assess the localization of CRT and FasL. The interaction of CRT with FasL was verified by coimmunoprecipitation. SH-SY5Y cell viability was determined by MTT assay, and cell apoptosis was assessed by flow cytometry. The measurement of caspase-8 and caspase-3 activity was carried out using caspase activity assay kits. Results. After IRI, CRT was upregulated on the neuron surface and bound to FasL, leading to increased viability of OGD-exposed SH-SY5Y cells and decreased activity of caspase-8 and caspase-3. Conclusions. This study for the first time revealed that increased CRT inhibited Fas/FasL-mediated neuronal cell apoptosis during the early stage of ischemic stroke, suggesting it to be a potential protector activated soon after IRI

    Additional Stress on a Buried Pipeline under the Influence of Coal Mining Subsidence

    Get PDF
    Buried pipelines influenced by coal mining subsidence will deform and generate additional stress during surface deformation. On the basis of the coordinating deformation relationship between buried pipeline and its surrounding soils, a stress analysis method of a buried pipeline induced by mining was proposed. The buried pipeline additional stresses were analyzed; meanwhile, a corresponding analysis process of the pipeline stresses was also presented during mining subsidence. Furthermore, based on the ground subsidence along the pipeline predicted in advance by the probability integral method, the additional stresses and Von Mises equivalent stresses and their distributions along the buried pipeline induced by the exploitation of a coal mining working face named 14101 were obtained. Meanwhile, a comparative analysis of additional stresses between simulation and analytical calculation was performed for the deep analysis and reliability of the results presented by the proposed methodology in this paper. The proposed method provides references for analysis of the additional stress and safety of buried pipelines under the influence of mining subsidence
    • …
    corecore